Instructions: In-class exercises are meant to introduce you to a new topic and provide some practice with the new topic. Work in a team of up to 4 people to complete this exercise. You can work simultaneously on the problems, or work separate and then check your answers with each other. Turn in <u>one</u> copy of the exercise per group.

Names:

Boolean Algebra

Logic, Sets, and Boolean Algebra

Logic $(p \land q)$, sets $(P \cap Q)$, and now boolean algebra $(p \cdot q)$ have a lot in common with each other. In fact, sometimes it can be useful to convert a problem from one type to another in order to learn more about a problem. Here are the "translations":

	Logic	Sets	Boolean Algebra
Variables	p, q, r	A, B, C	a, b, c
"and" operation	\wedge	\cap	
"or" operation	V	U	+
"not" operation	_	,	1
"-" operation	$a \wedge \neg b$	A - B	$a \cdot b'$
Special	Tautology	Universal set U	1
	Contradiction	Empty set \emptyset	0

Example:

Rephrase the following Logic operation using Set and Boolean Algebra notations: $(p \wedge q) \vee r$

- Logic: $(p \land q) \lor r$
- Sets: $(P \cap Q) \cup R$
- Boolean algebra: $(p \cdot q) + r$

Question 1

Rewrite the following using Boolean Algebra notation:

a. $p \land q$ b. $p \lor q$ c. $\neg p$ d. $(p \land \neg q) \lor p$ e. $\neg (\neg p)$ f. $(p \land \neg q) \lor p \equiv p$ g. (A - B)h. $A' \cup (A \cap B)$ i. $(A - B)' = A' \cup (A \cap B)$

Boolean Algebra properties

Boolean Algebra Properties ^a				
Commutative	$a \cdot b = b \cdot a$	a+b=b+a		
Associative	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$	(a+b) + c = a + (b+c)		
Distributive	$\begin{aligned} a \cdot (b+c) \\ = (a \cdot b) + (a \cdot c) \end{aligned}$	$a + (b \cdot c)$ = $(a + b) \cdot (a + c)$		
Identity	$a \cdot 1 = a$	a + 0 = a		
Negation	a + a' = 1	$a \cdot a' = 0$		
Double negative	(a')' = a			
Idempotent	$a \cdot a = a$	a + a = a		
DeMorgan's laws	$(a \cdot b)' = a' + b'$	$(a+b)' = a' \cdot b'$		
Universal bound	a + 1 = 1	$a \cdot 0 = 0$		
Absorption	$a \cdot (a+b) = a$	$a + (a \cdot b) = a$		
Complements of 1 and 0	1' = 0	0' = 1		
^a From Discrete Mathematics, Ensley and Crawley				

Examples ^a **Example 1:** Simplify $(a + 1) \cdot (a + 0)$ $(a+1)\cdot(a+0)$ $= 1 \cdot (a+0)$ universal bound $= (a+0) \cdot 1$ commutative = a + 0identity = aidentity **Example 2:** Simplify $a \cdot (a' + b)$ $a \cdot (a'+b)$ $= a \cdot a' + a \cdot b$ distributive $= 0 + a \cdot b$ negation $= a \cdot b + 0$ commutative $= a \cdot b$ identity Show that $a \cdot b + b \cdot c = (a + c) \cdot b$ Example 3: $a \cdot b + b \cdot c$ $= b \cdot a + b \cdot c$ commutative $= b \cdot (a+c)$ distributive $= (a+c) \cdot b$ commutative **Example 4:** Show that if a' + b = 1 then $a \cdot b' = 0$. a' + b $= (a')' \cdot b'$ double negative = (a' + b)'DeMorgan =(1)'Since a' + b = 1= 0Complements ^aFrom Discrete Mathematics, Ensley & Crawley, 3.4

Question 2

Simplify the following equations using the Boolean Algebra properties.

a. ab + ab'

b. $cd \cdot c'd'$

c. $e \cdot (e+f)$

d. $g \cdot (h+i)$

e. $j + (k \cdot l)$

f. m + (no + no')

Example

Using the Boolean Algebra properties, transform the left-hand side of
each equation to the right-hand side.
Show that ba + ba' = bStep
 $ba + ba' \rightarrow b \cdot (a + a')$ 1. Distributive $a \cdot (b + c) = (ab) + (ac)$ Step
 $ba + ba' \rightarrow b \cdot (a + a')$ 2. Negation a + a' = 1 $b \cdot (a + a') \rightarrow b \cdot (1)$ 3. Identity $a \cdot 1 = a$ $b \cdot (1) \rightarrow b \cdot 1 = b$

Therefore ba + ba' = b

Question 3

Using the Boolean Algebra properties, transform the left-hand side of each equation to the right-hand side.

c. x'yz + x'y'z + xyz' + xy'z' = xz' + x'z(Group up two terms at a time: xyz' + xy'z' and x'yz + x'y'z.)

d. xyz + xyz' + x'yz + x'yz' = y

Logic Circuits

Question 4

Write out the Boolean expression that describes each diagram:

Question 5

Draw a circuit diagram for the following Boolean expressions: a. a + b' | b. $a' \cdot b'$ | c. $a + (b \cdot c)$