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Logic, Sets, and Boolean 
Algebra are related, and we 
can translate problems 
between each of these…
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Topics

1. Boolean Algebra

2. Properties

3. Logic Circuits
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1. Boolean Algebra
Notes

Logic (p  q), sets (P  Q), and ∧ ∩
now boolean algebra (p · q) have a 
lot in common with each other. In 
fact, sometimes it can be useful to 
convert a problem from one type 
to another in order to learn more 
about a problem.
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1. Boolean Algebra
Notes

“Translations”:
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Logic Sets Boolean Algera

Variables p, q, r A, B, C a, b, c

“and” ∧ ∩ ·

“or” ∨ ∪ +

“not” / negation ¬ ‘ ‘

“difference” / - p  ¬q∧ A − B a · b’



  

1. Boolean Algebra
Notes

Example: Translate (p  q)  r∧ ∨
into Set notation and Boolean 
Algebra notation.
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1. Boolean Algebra
Notes

Example: Translate (p  q)  r∧ ∨
into Set notation and Boolean 
Algebra notation.

Set notation: (P  Q)  R∩ ∪

Boolean algebra: (p · q) + r
or pq + r
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1. Boolean Algebra
Notes

Example: Translate A – B to Logic 
and Boolean Algebra notation.
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1. Boolean Algebra
Notes

Example: Translate A – B to Logic 
and Boolean Algebra notation.

Logic: a  ¬b∧

Boolean algebra: a·b’

(10/31)



  

Properties



  

2. Properties
Notes

Just like with Sets and Logic, 
there are a set of properties that 
hold, that allow us to manipulate 
our Boolean algebra statements 
to see what equations are 
equivalent.
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2. Properties
Notes

Commutative
a · b = b · a

a + b = b + a

Commutative

a · b = b · a

a + b = b + a
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2. Properties
Notes

Commutative
a · b = b · a

a + b = b + a

Associative
(a · b) · c = a · (b · c)

(a + b) + c = a + (b + c)

Associative

(a · b) · c = a · (b · c)

(a + b) + c = a + (b + c)
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2. Properties
Notes

Commutative
a · b = b · a

a + b = b + a

Associative
(a · b) · c = a · (b · c)

(a + b) + c = a + (b + c)

Distributive
a · (b + c) 

= (a · b) + (a · c)

a + (b · c) 
= (a + b) · (a + c)

Distributive

a · (b + c) = (a · b) + (a · c)

a + (b · c) = (a + b) · (a + c)
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2. Properties
Notes

Identity
a · 1= a
a + 0= a

Identity

a · 1= a

a + 0= a
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2. Properties
Notes

Identity
a · 1= a
a + 0= a

Negation
a + a’ = 1
a · a’ = 0

Negation

a + a’ = 1

a · a’ = 0
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2. Properties
Notes

Identity
a · 1= a
a + 0= a

Negation
a + a’ = 1
a · a’ = 0

Double Negative

(a’)’ = a
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2. Properties
Notes

Identity
a · 1= a
a + 0= a

Negation
a + a’ = 1
a · a’ = 0

Idempotent
a · a = a
a + a = a

Idempotent

a · a = a

a + a = a
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2. Properties
Notes

DeMorgan’s Laws
(a · b)’ = a’ + b’
(a + b)’ = a’ · b’

DeMorgan’s Laws

(a · b)’ = a’ + b’

(a + b)’ = a’ · b’
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2. Properties
Notes

DeMorgan’s Laws
(a · b)’ = a’ + b’
(a + b)’ = a’ · b’

Universal bound
a + 1 = 1
a · 0 = 0

Universal bound

a + 1 = 1

a · 0 = 0
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2. Properties
Notes

DeMorgan’s Laws
(a · b)’ = a’ + b’
(a + b)’ = a’ · b’

Universal bound
a + 1 = 1
a · 0 = 0

Absorption
a · (a + b) = a
a + (a · b) = a

Absorption

a · (a + b) = a

a + (a · b) = a
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2. Properties
Notes

DeMorgan’s Laws
(a · b)’ = a’ + b’
(a + b)’ = a’ · b’

Universal bound
a + 1 = 1
a · 0 = 0

Absorption
a · (a + b) = a
a + (a · b) = a

Complements of 1 and 0

1’ = 0

0’ = 1
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2. Properties
Notes

a · (b + c)
= (a · b) + (a · c)

a + (b · c)
= (a + b) · (a + c)

a + a’ = 1
a · a’ = 0

(a · b)’ = a’ + b’
(a + b)’ = a’ · b’

a · (a + b) = a
a + (a · b) = a

Example: Simplify the following expression.

(a+1)·(a+0)
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2. Properties
Notes

a · (b + c)
= (a · b) + (a · c)

a + (b · c)
= (a + b) · (a + c)

a + a’ = 1
a · a’ = 0

(a · b)’ = a’ + b’
(a + b)’ = a’ · b’

a · (a + b) = a
a + (a · b) = a

Example: Simplify the following expression.

(a+1)·(a+0)
= 1 · (a+0) Universal Bound
= (a+0) · 1 Commutative
= a + 0 Identity
= a Identity
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2. Properties
Notes

a · (b + c)
= (a · b) + (a · c)

a + (b · c)
= (a + b) · (a + c)

a + a’ = 1
a · a’ = 0

(a · b)’ = a’ + b’
(a + b)’ = a’ · b’

a · (a + b) = a
a + (a · b) = a

Example: Simplify the following expression.

a · (a’ + b)
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2. Properties
Notes

a · (b + c)
= (a · b) + (a · c)

a + (b · c)
= (a + b) · (a + c)

a + a’ = 1
a · a’ = 0

(a · b)’ = a’ + b’
(a + b)’ = a’ · b’

a · (a + b) = a
a + (a · b) = a

Example: Simplify the following expression.

a · (a’ + b)
= a · a’ + a · b Distributive
= 0 + a · b Negation
= a · b + 0 Commutative
= a · b Identity
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Logic Gates



  

3. Logic Gates
Notes

We are going to be using logic gates as one way to 
represent our Boolean Algebra expressions 
graphically. The gates that we will be using are:
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Input(s)

Output



  

3. Logic Gates
Notes

We can use 
logic gates 
to 
graphically 
represent a 
boolean 
algebra 
equation.
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Conclusion
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