BOOLEAN ALGEBRA

Written by Rachel Singh, last updated Nov 1, 2018

About

Logic, Sets, and Boolean Algebra are related, and we can translate problems between each of these...

TOPICS

1. Boolean Algebra

2. Properties

3. Logic Circuits

BOOLEAN ALGEBRA

Logic ($p \land q$), sets ($P \cap Q$), and now boolean algebra ($p \cdot q$) have a lot in common with each other. In fact, sometimes it can be useful to convert a problem from one type to another in order to learn more about a problem.

1. BOOLEAN ALGEBRA

"Translations":

	Logic	Sets	Boolean Algera
Variables	p, q, r	A, B, C	a, b, c
"and"	٨	\cap	•
"or"	V	U	+
"not" / negation	-	"	"
"difference" / -	рл ¬q	A – B	a · b'

Notes

Example: Translate (p A q) V r into Set notation and Boolean Algebra notation.

Example: Translate (p A q) V r into Set notation and Boolean Algebra notation.

Set notation: (P n Q) U R

Boolean algebra: (p · q) + r or pq + r

Example: Translate A – B to Logic and Boolean Algebra notation.

Example: Translate A – B to Logic and Boolean Algebra notation.

Logic: a $\Lambda \neg b$

Boolean algebra: a·b'

Notes

Just like with Sets and Logic, there are a set of properties that hold, that allow us to manipulate our Boolean algebra statements to see what equations are equivalent.

Commutative

 $a \cdot b = b \cdot a$

a + b = b + a

Notes

Commutative $a \cdot b = b \cdot a$ a + b = b + a

Associative

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$(a + b) + c = a + (b + c)$$

Notes Commutative

 $a \cdot b = b \cdot a$ a + b = b + a

Associative $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (a + b) + c = a + (b + c)

Distributive

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

Commutative $a \cdot b = b \cdot a$ a + b = b + aAssociative $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (a + b) + c = a + (b + c)Distributive $a \cdot (b + c)$ $= (a \cdot b) + (a \cdot c)$ $a + (b \cdot c)$ $= (a + b) \cdot (a + c)$

Notes

(15/31)

Identity

 $a \cdot 1 = a$

a + 0= a

Notes

Identity a · 1= a a + 0= a

Negation

$$\mathbf{a} \cdot \mathbf{a}' = \mathbf{0}$$

Notes Identity

a · 1= a a + 0= a

Negation a + a' = 1 $a \cdot a' = 0$

Double Negative

$$(a')' = a$$

Notes

Identity a · 1= a a + 0= a

Negation a + a' = 1 $a \cdot a' = 0$

Idempotent

 $a \cdot a = a$

a + a = a

Notes Identity $a \cdot 1 = a$ a + 0= a Negation a + a' = 1 $\mathbf{a} \cdot \mathbf{a}' = \mathbf{0}$ Idempotent $a \cdot a = a$ a + a = a

DeMorgan's Laws

$$(a \cdot b)' = a' + b'$$

$$(a + b)' = a' \cdot b'$$

Notes

DeMorgan's Laws $(a \cdot b)' = a' + b'$ $(a + b)' = a' \cdot b'$

Universal bound

$$\mathbf{a} \cdot \mathbf{0} = \mathbf{0}$$

Notes

DeMorgan's Laws $(a \cdot b)' = a' + b'$ $(a + b)' = a' \cdot b'$

Universal bound a + 1 = 1 $a \cdot 0 = 0$

Absorption

$$a + (a \cdot b) = a$$

Notes

DeMorgan's Laws $(a \cdot b)' = a' + b'$ $(a + b)' = a' \cdot b'$

Universal bound a + 1 = 1 $a \cdot 0 = 0$

Absorption $a \cdot (a + b) = a$ $a + (a \cdot b) = a$

Complements of 1 and 0

1' = 0

0' = 1

Notes

DeMorgan's Laws $(a \cdot b)' = a' + b'$ $(a + b)' = a' \cdot b'$

Universal bound a + 1 = 1 $a \cdot 0 = 0$

Absorption $a \cdot (a + b) = a$ $a + (a \cdot b) = a$

Example: Simplify the following expression.

```
(a+1)·(a+0)
```

Example: Simplify the following expression.

 $(a+1)\cdot(a+0)$ = 1 · (a+0) = (a+0) · 1 = a + 0 = a

Universal Bound Commutative Identity Identity

Example: Simplify the following expression.

$$a \cdot (a' + b)$$

Example: Simplify the following expression.

 $a \cdot (a' + b)$ $= a \cdot a' + a \cdot b$ $= 0 + a \cdot b$ $= a \cdot b + 0$ $= a \cdot b$

Distributive Negation Commutative Identity

LOGIC GATES

3. LOGIC GATES

We are going to be using logic gates as one way to represent our Boolean Algebra expressions graphically. The gates that we will be using are:

Output

Notes

3. LOGIC GATES

We can use logic gates to graphically represent a boolean algebra equation.

Notes

CONCLUSION