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When making a proposition, how would you prove that 
what you say is true for all cases?

When writing a program, how are you sure it does what 
you expect it to do?

In this part we will look at proofs.
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1. Turning Statements into Implications

(5/40)

This time we're exploring mathematical writing 
and getting introduced to proofs. To work with 
a statement, we turn it into an implication that 
we can work with mathematically.

It will be easier to come up with a counter-
example to a statement if we can put it in an “if, 
then” framework first.

Notes

Implication:
p  q→



  

1. Turning Statements into Implications

(6/40)

Example:
For every positive even integer n, n+1  is odd.

Notes

Implication:
p  q→

p: hypothesis
q: conclusion



  

1. Turning Statements into Implications

(7/40)

Example:
For every positive even integer n, n+1  is odd.

Hypothesis Conclusion

“If a positive integer n is even, 
then n+1  is odd.”

Notes

Implication:
p  q→

p: hypothesis
q: conclusion



  

1. Turning Statements into Implications

(8/40)

Example:
For every positive even integer n, n+1  is odd.

“If a positive integer n is even, 
then n+1  is odd.”

Given this statement, if we wanted to disprove it, 
what would we need to come up with?

Notes

Implication:
p  q→

p: hypothesis
q: conclusion
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2. Counter-Examples
Notes

Implication:
p  q→

Negation:
p  ¬q∧

(10/40)

A counter-example is a way to 
disprove a proposition.

For implications, if we can keep the 
hypothesis true, and find a scenario 
where the conclusion ends up being 
false, then we can disprove a 
statement.



  

2. Counter-Examples

(11/40)

Example:
If n  is a prime number, then n  is odd.

What is the hypothesis and the conclusion?

Notes

Implication:
p  q→

Negation:
p  ¬q∧



  

2. Counter-Examples

(12/40)

Example:
If n  is a prime number, then n  is odd.

What is the hypothesis and the conclusion?

Hypothesis: n  is a prime number
Conclusion: n  is odd

What is the negation of the implication?

Notes

Implication:
p  q→

Negation:
p  ¬q∧



  

2. Counter-Examples

(13/40)

Example:
If n  is a prime number, then n  is odd.

What is the hypothesis and the conclusion?

Hypothesis: n  is a prime number
Conclusion: n  is odd

What is the negation of the implication?

n  is a prime number and n  is NOT odd.

Notes

Implication:
p  q→

Negation:
p  ¬q∧



  

2. Counter-Examples

(14/40)

Example:
If n  is a prime number, then n  is odd.

Implication: if n  is a prime number then n  is odd.

Negation: n  is a prime number and n  is NOT odd.

Can we find a counter-example that 
makes the negation true?

Notes

Implication:
p  q→

Negation:
p  ¬q∧



  

2. Counter-Examples

(15/40)

Example:
If n  is a prime number, then n  is odd.

Implication: if n  is a prime number then n  is odd.

Negation: n  is a prime number and n  is NOT odd.

Can we find a counter-example that 
makes the negation true?

2 is a prime number and 2 is NOT odd.

Notes

Implication:
p  q→

Negation:
p  ¬q∧



  

2. Counter-Examples

(16/40)

Example:
If n  is a prime number, then n  is odd.

Implication: if n  is a prime number then n  is odd.

Negation: n  is a prime number and n  is NOT odd.

2 is a prime number and 2 is NOT odd.

Notes

Implication:
p  q→

Negation:
p  ¬q∧

We have found at least one counter-example, so this 
means that the original implication has been disproven.



  

Even, Odd, and Divisibility



  

3. Even, Odd, and Divisibility

(18/40)

In Chapter 2, we will be working with the concept of 
even and odd numbers a lot, and working out proofs 
relating to these concepts.

But, how do you actually specify that some number 
is even or odd symbolically?

Notes

Even:

Odd:

Divisible by x:



  

3. Even, Odd, and Divisibility

(19/40)

“A formal definition of an even number is that it is 
an integer of the form n = 2k,
where k  is an integer;

it can then be shown that an odd number is an 
integer of the form n = 2k + 1."

From https://en.wikipedia.org/wiki/Parity\_(mathematics)

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:



  

3. Even, Odd, and Divisibility

(20/40)

Example: Rewrite the following using the definition 
of an even or odd number to “prove” that it is even 
or odd:

1. 5

2. 6

3. -11

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:



  

3. Even, Odd, and Divisibility

(21/40)

Example: Rewrite the following using the definition 
of an even or odd number to “prove” that it is even 
or odd:

1. 5 = 2(2) + 1 It is odd

2. 6 = 2(3) It is even

3. -11 = 2(-6) + 1 It is odd

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:



  

3. Even, Odd, and Divisibility

(22/40)

We looked at the definitions for an even and odd 
number.
Here's one more – divisibility!

“An integer n  is divisible by 4 if it is the result of 4 
times some other integer. Symbolically, n = 4k.”

Rewrite the following number to show that it is divisible by 
32

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

3. Even, Odd, and Divisibility

(23/40)

We looked at the definitions for an even and odd 
number.
Here's one more – divisibility!

“An integer n  is divisible by 4 if it is the result of 4 
times some other integer. Symbolically, n = 4k.”

Rewrite the following number to show that it is divisible by 
32 = 8(4)

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

The Closer Property
of Integers



  

4. The Closure Property of Integers
Notes

(25/40)

“A set has closure under an operation if performance of 
that operation on members of the set always 
produces a member of the same set; in this case we 
also say that the set is closed under the operation."

From https://en.wikipedia.org/wiki/Closure\_(mathematics)



  

4. The Closure Property of Integers
Notes

(26/40)

“A set has closure under an operation if performance of 
that operation on members of the set always 
produces a member of the same set; in this case we 
also say that the set is closed under the operation."

From https://en.wikipedia.org/wiki/Closure\_(mathematics)

● If you add two integers, the result is also an integer

● If you subtract two integers, the result is also an integer

● If you multiply two integers, the result is also an integer

● If you divide two integers, the result may not be an integer.
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5. Direct Proofs

(28/40)

With a Direct Proof, we prove a statement by 
substituting the variables with our definitions for 
even, odd, or divisible by. From there, we work out 
the math and simplify until we get a statement that 
proves the statement.

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(29/40)

Say we have “if n is even, then n+1 is odd”. We would 
start by coming up with a substitution for n…

n = 2k

Then we would substitute it into the n+1 statement, 
hopefully simplifying it into the definition of some 
odd number (to match the original proposition).

n+1 is odd (2k) + 1 is odd 2k + 1 is odd

This is in the form of the 
definition of an odd integer, so 
we have proven the statement.

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(30/40)

Example Direct Proof:
“The result of summing any odd integer with any even 
integer is an odd integer."

First, what is the hypothesis and the conclusion?

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(31/40)

Example Direct Proof:
“The result of summing any odd integer with any even 
integer is an odd integer."

First, what is the hypothesis and the conclusion?

If x is an odd integer and y is an even integer, 
then x + y is an odd integer.

I made up variables “x” and “y” here.

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(32/40)

Example Direct Proof:
“The result of summing any odd integer with any even 
integer is an odd integer."

If x is an odd integer and y is an even integer, 
then x + y is an odd integer.

Now we want to come up with definitions for the 
variables used in this statement: x and y.

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(33/40)

Example Direct Proof:
“The result of summing any odd integer with any even 
integer is an odd integer."

If x is an odd integer and y is an even integer, 
then x + y is an odd integer.

Now we want to come up with definitions for the 
variables used in this statement: x and y.

x = 2k + 1 y = 2j

Make sure that, for different variables, you use different 
“alias” variables as well! Don’t re-use “k”!

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(34/40)

Example Direct Proof:
“The result of summing any odd integer with any even 
integer is an odd integer."

If x is an odd integer and y is an even integer, 
then x + y is an odd integer.

x = 2k + 1 y = 2j

The conclusion talks about x + y, so this is where we start our 
math – but we substitute x and y with the equations above.

x + y => 2k+1 + 2j Now we simplify

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(35/40)

Example Direct Proof:
“The result of summing any odd integer with any even 
integer is an odd integer."

x + y => 2k+1 + 2j
2k + 2j + 1
2(k+j) + 1

All we have to do is simplify (if we can) and factor terms as 
appropriate to try to get to the definition of an odd integer.

An odd integer is 2 times “some integer” plus 1. k+j  is “some 
integer”, since adding two integers gives us another integer.

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(36/40)

Example 2: If n  is even and m  is odd, then n x m is even. Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(37/40)

Example 2: If n  is even and m  is odd, then n x m is even.

n x m => (2k)(2j+1) Even number times odd number
= 4kj + 2k Multiply through
= 2(2kj + k) Factor out the 2

2(2kj + k) is in the form of the definition of an even integer,
so therefore we have proven the original statement.

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(38/40)

Example 3:   If a number is divisible by 6, then it is even. Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

5. Direct Proofs

(39/40)

Example 3:   If a number is divisible by 6, then it is even.

n = 6k Divisible by 6
= 2(3k) Factored out the 2

2(3k) is in the form of the definition of an even integer,
so therefore we have proven the original statement.

Notes

Even:
n = 2k

Odd:
n = 2k + 1

Divisible by x:
n = xk



  

Conclusion

Doing proofs takes practice to learn and 
remember the steps. Make sure to give 
yourself time to work through problems and 
practice, practice, practice!
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